Finding the Mainstream

Michael F. Goodchild

GIS is becoming mainstream

More and more dependence on general IT solutions

- RDBMS
- Object models
- CASE tools, UML
- Location as an increasingly important attribute of records
 - in transactions
 - in location-based services

Tract	Рор	Location	Shape
1	3786	х,у	\bigcirc
2	2966	х,у	
3	5001	x,y	
4	4983	x,y	\bigcirc
5	4130	x,y	\bigwedge
6	3229	x,y	\triangleleft
7	4086	х,у	\bigtriangledown
8	3979	х,у	\sim

How special is GIS?

- It started as highly specialized
 - but has become less so over time
 - will GIS disappear into the IT mainstream?
- What are the special characteristics of GIS?
 - is spatial special?
 - how special will GIS be in 20 years?

Origins of GIS

- The Canada Geographic Information System
 - circa 1965
 - support for the Canada Land Inventory
 - \$20 million investment by the Government of Canada
 - justified by accurate cost-benefit analysis

Environmental	Map Layer	Format	Attribute Tables
Geology		— Polygon-	- 8-5
Hazard Areas		— Polygon-	- 6-10
Existing Land Use		— Polygon-	- 2-4
Noise Contours	~ ((P) }	— Polygon-	- 2-4
Floodplain —		— Polygon -	- 3-5
Solls		— Polygon-	- 3-5
Vegetation		— IPolygon-	- 1-3
Serticial Hydrology -		Line/Polygo	n 12-15
EIR Study Arece		eint/Polyge	1-3
Flenning Steey Index. Reference —		- ⁽ Peint -	- 1-3

• • •

Inventions attributable to CGIS

Measurement of area from digital maps The optical scanner The Morton order - to minimize seek times for adjacent tiles Topological data structures to avoid double digitizing a form of database normalization

CGIS engineering

Low-level source code (PL1)
IBM operating system (JCL)
Custom input device (map scanner)

A contemporary GIS

RDBMS CASE tools for database design - Visio, UML Graphics libraries Reusable software components Dynamic linking with other component libraries

Mainstream database solutions

The georelational model

- adaptation of RDBMS
- related tables
- a hybrid of mainstream and specialized
- Object-oriented modeling
 - objects as instances of general classes
 - classes as specializations of more general classes (inheritance)
 - methods associated with classes (encapsulation)
 - associations between objects

Specialized GIS data models

The basic elements built into the GIS

- points, lines, areas
- the GIS mainstream
- How these elements are specialized in application domains (vertical markets)
 - railroad track as a class of transportation link
 - transportation link as a class of line

Unified Modeling Language

Visual representation of a data model

- conventional symbols
- implemented in Visio
- Creation of database layout
 - use CASE tools
 - build tables
 - populate tables with data

UNETRANS

- Helping transportation users of ArcGIS by providing a database framework that includes familiar elements
 - contains the core items
 - is easy to extend and specialize
 - add new attributes
 - add specialized classes

ArcGIS Transportation Data Model

Actuations and incluines

Assets

How important are coordinates anyway?

Kocmoud and House, Texas A&M University

Space as a matrix

- W where w_{ij} is some measure of interaction
 - adjacency
 - decreasing function of distance
 - invariant under rotation, displacement
 - readily obtained from a GIS

Lumpers and splitters

Lump GIS with other IT applications

 and benefit from economies of scale
 one RDBMS fits all

 Split GIS from other IT applications

- it addresses a unique type of information
- it must adapt to the unique properties of that type

What's special about spatial? A statistician's view

Spatial dependence

- Tobler's First Law of Geography
- "All things are related, but nearby things are more related than distant things"
- properties vary slowly across the Earth's surface
- try to imagine a world in which that's not true
 - try to describe, navigate in, live in such a world
 - hell is a place with no spatial dependence
- Spatial heterogeneity
 - results of analysis vary from one place to another

What's special about spatial? An SAP's view

- Large volume
 - petabytes online
- Uncertainty
 - impossible to measure location exactly
 - impossible to be certain about some attributes, e.g. vegetation cover, soil
- Applications
 - in virtually all areas of human activity
- Production arrangements
 - produced by central mapping agencies
- Impacts on society
 - privacy

What's special about spatial? A database view

First principle of OODB design

- all objects are instances of more general classes
- Not all geographic phenomena are easily conceptualized as discrete objects
 - road networks, topography are continuous
 - must be broken into discrete objects to be handled in DBMS
 - but there are many possible ways of breaking them into discrete chunks
 - dynamic segmentation

Scottish Munros

1... Ben Hope 2., Ben Klibreck 3...Ben More Assynt 4...An Teallach 5. Seana Bhraigh 6...Ben Wyvis 7...Slioch 8...Sgorr Ruadh 9..Moruisq 10.. Sgurr na Ruaidhe **11..Bia Bheinn** 12...Squrr na Lapalch 13...Ben Attow 14. The Saddle 15..Creag a' Mhaim **16..Ladhar Bheinn**

17..Coireachan 18...Ben Nevis 19..Ben More 20...Ben Starav 21. Braeriach 22...Ben Avon 23. Meall Chualch 24. Mt Keen 25...Deinn Dearg 26...Glas Maol 27..Driesh 28. Schlehallinn 29...Ben Chonzie 30...Ben Lawers 30...Ben Challum 32...Ben Lomond

A week in Jonathan Raper's life

Updating a street database through transactions

If spatial is special...

Special courses for SAPs education in the principles of GIS - training in the practice of GIS A distinct metadata standard FGDC, ISO 19115, ANZLIC Search engines specialized to find geospatial data

🗱 MapFusion (tm) Workstation - By Global Geomatics		
<u>File Edit Tools ?</u>		
Personal Library Map Query/Legend	1	
Share Folder		
🖃 e: []	Choose the directory where your data files are located	
E:\ 176b_labs Acrobat3	Search Complete!	
Acrobat4	161 Files in your library!	
ADOBEAPP	Find	

Theme	Туре	Adapter	Path Name	File Name 🔺			
DTED/Level 0/33d00 N/98d00 W	Image	dted	e:/GlobalGeo/Common/Geodata/demo/dted0/dt	DTED(DISK			
DTED/Level 1/32d00 N/98d00 W	32d00 N/98d00 W Image dted e:/GlobalGeo/Common/Geodata/demo/dted1/dt		DTED(DISK				
DTED/Level 2/31d15 N/97d45 W	/d45 W Image dted e:/GlobalGeo/Common/Geodata/demo/dted2/dt		DTED(DISK				
225886	Matrix	geotiff	e:/176b_labs/225886.tif	225886			
225886	Image	geotiff	e:/176b_labs/225886.tif	225886			
CADRG/1:50K/zone1/32d00 N/98d	/1:50K/zone1/32d00 N/98d Image rpf e:/GlobalGeo/Common/Geodata/demo/cadrg/rpf		1:50K@1@				
CADRG/1:50K/zone2/32d00 N/98d	one2/32d00 N/98d Image rpf e:/GlobalGeo/Common/Geodata/demo/cadrg/rpf		1:50K@2@				
CADRG/1:1M/zone1/33d06 N/99d1	M/zone1/33d06 N/99d1 Image rpf e:/GlobalGeo/Common/Geodata/demo/cadrg/rpf		1:1M@1@(
CADRG/1:1M/zone2/33d06 N/100d	DRG/1:1M/zone2/33d06 N/100d Image rpf e:/GlobalGeo/Common/Geodata/demo/cadrg/rpf		1:1M@2@(
CADRG/1:250K/zone1/32d05 N/98	1/32d05 N/98 Image rpf e:/GlobalGeo/Common/Geodata/demo/cadrg/rpf 1		1:250K@1(
CADRG/1:250K/zone2/32d05 N/98	5 N/98 Image rpf e:/GlobalGeo/Common/Geodata/demo/cadrg/rpf		1:250K@2(
usenty	Area	shp	e:/176b_labs	uscnty 🔄 🗾			
•				•			
Map Selected Coverage(s)							
Silvare Data							

Conclusions (1)

- Some GIS applications are more compatible with the IT mainstream than others
 - discrete objects
 - location as an attribute
 - transactions

Conclusions (2)

- Other applications are much less compatible
 - GIS in scientific research
 - dominance of fields of continuous variation
 - rasters vs discrete vector objects
 - network applications
 - arbitrary chunking of networks

Conclusions (3)

Economies of scale will continue to pull GIS into the mainstream

 applications that are more specialized will have to pull hard in the opposite direction

GIS data sets require highly specialized tools for search and retrieval

 a new generation of search engines is badly needed

Conclusions (4)

Because of the diversity of GIS, it will always be difficult to bound and regulate the field

- except in limited, well-defined areas such as the cadaster
- The special characteristics of GIS will continue to foster
 - a science of geographic information
 - education in GIS at all levels
 - a need for training at all levels