GIS and Modeling

Michael F. Goodchild University of California Santa Barbara

Outline

What is modeling?
GIS support for modeling
Some immediate issues
Model-sharing infrastructure

Tests of a model

One or more variables are predicted

- from inputs
- at one point in time
 - Universal Soil Loss Equation
 - Spatial Interaction Model
- dynamically
 - urban growth models
- Spatially disaggregated
 - inputs or outputs
 - two or more elements
- Not invariant under relocation

Types of model

Conceptual

- boxes and arrows
- rules
- Mathematical
 - partial differential equation
- Numerical
 - finite difference approximation
 - scale-dependent
- Computational
 - code

GIS and modeling

Using GIS to prepare data, display results

 loosely coupled to modeling code

 Model and GIS working off the same database

- component-based software architecture
- tight coupling
- Writing the model in the GIS's scripting language
 - embedding
 - performance problems for dynamic models

PCRaster

Utrecht group

- Designed for dynamic modeling
- Van Duersen's language

-c = a + b

- Rich applications
 - geomorphic processes
 - seed dispersal
 - urban growth

Simple models produce striking results

GIS within the scientific world

Why would a modeler use GIS?

- poor performance
- limited mathematical tools
- compare Mathlab, Stella, C
- IT is a minor issue

GIS becomes more attractive when

- science must be integrated with policy
- science must be multidisciplinary
- space is highly disaggregated
- spatial representation issues are important

Some representation issues

Spatial discretization for solution of PDEs

- finite difference
 - square mesh
 - raster
- finite element
 - mix of triangles and quadrilaterals
 - polynomial variation within elements
 - continuity across elements
 - compare TIN
- Modeling on the sphere
 - global climate modeling in spherical harmonics

Support for FEM

Mesh-generating code

- e.g., given an estuary, develop an FEM mesh to model tides
- adaptive meshes
 - redefined during iteration
- FEM representations of fields
 - in addition to current six
 - grid of points
 - raster of cells
 - TIN
 - digitized contours
 - irregular polygons
 - irregular points

Vector fields

a as scalar field
 a as vector field

 linked components
 enabling vector field operations
 div, grad, curl
 visualization

Kemp, Vckovski

a should be independent of its representation

- as irregular point sample
- as regular cells
- Issues of representation exposed only when necessary or requested
 - e.g., raster cell size
 - vector/raster distinction disappears
 - GIS user interaction is vastly simplified

Support for transportation modeling

Modeling of moving vehicles

- driver behavior
- -e.g., Paramics
- problem with polylines
- arcs with zero- and first-order continuity

Simulations

1.8 vehicles per driveway

Driver behavior influenced by:

- lane width
- slope
- view distances
- traffic control mechanisms
- information feedback
- driver aggressiveness
- **770** homes
 - clearing times > 30 minutes

Integrating discrete objects and fields

For modeling

- e.g., modeling the movement of a buoy in a current
- For visualization
 - e.g., painting field values on probe objects
 - e.g., visualizing vector fields through particle motions

Model-sharing infrastructure

Investment in data-sharing infrastructure

- warehouses, clearinghouses, digital libraries
 - Geography Network
- metadata standards, catalogs, Z39.50, XML
- OGC Web specifications
- Grid computing
 - transparent integration of services and data independent of location
- It's all bits
 - bits as data, papers, models, code
 - which bits are the most valuable?

Towards an infrastructure for dynamic models

Infrastructure for sharing

- search
- discovery
- evaluation of fitness for use
- acquisition
- execution

Server-side or client-side execution

Current status

Some archives - some pre-WWW Some community efforts Earth System Modeling Framework -www.esmf.ucar.edu WSDL, UDDI ArcScripts www.ncgia.ucsb.edu/~scott

Research in Metadata for Computer Models

Models available over the Web Model research and articles Metadata & Cataloging: Examples, Ideas & Articles

> Meetings Interviews Readings

Reporting Model 'Fitness of Use' or 'Validation' in Metadata Comparison chart for Model Metadata An Easier Method for Metadata Collection Creating a Computer Model Metadata Standard

A Special thanks to the people at The National Science Foundation for their support of the Research Education for Undergraduates program.

link to Geography 5, Fall 2000

Building a metadata standard

- 1. A model is a transformation
 - characterized by metadata for inputs and outputs
- 2. Write down the key elements
 compare FGDC CSDGM
- 3. How do humans do it?
 - we've been doing it for decades
- A first-draft standard

Model granularity

How big are the pieces?

- Software as reusable components
 - what are the appropriate components?
 - Paul Densham
 - Dave Bennett

Where are we?

Growing demand for integration of GIS and modeling

Growing community

- GIS and Environmental Modeling conferences
 - 1991, 1993, 1996, 2000
- Geocomputation conferences
 - Southampton 2003

An interesting technical agenda

Some challenging institutional issues