Models for Uncertainty in Area-Class Maps

Michael F. Goodchild University of California Santa Barbara

Discrete objects and continuous fields

Discrete objects

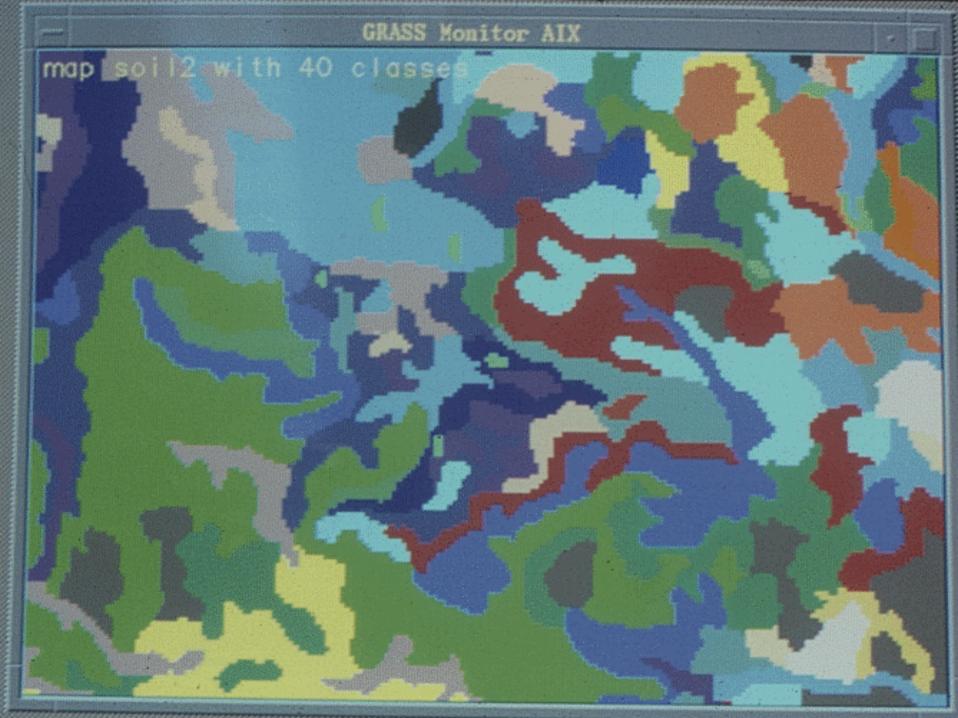
- accuracy of position
- accuracy of attributes
- Continuous fields
 - $-z = f(\mathbf{x})$
 - correct attribute at wrong location, or wrong attribute at correct location?
 - unless singularities can be found and independently located in the real world
 - hilltops, ridges, cliffs

The area class map

Assigns every location x to a class

- Mark and Csillag term
- $c = f(\mathbf{X})$
- a nominal field (or perhaps ordinal)
- classified scene
- soil map, vegetation cover map, land use map

We have no adequate models of uncertainty for this type of map



Uncertainty modeling

- Area-class maps are made by a long and complex process involving many stages, some partially subjective
- Maps of the same theme for the same area will not be the same
 - level of detail, generalization
 - vague definitions of classes
 - variation among observers
 - measuring instrument error
 - different classifiers, training sites
 - different sensors

Error and uncertainty

Error: true map plus distortion

- systematic measurements disturbed by stochastic effects
- accuracy (deviation from true value)
- precision (deviation from mean value)
- variation ascribed to error
- Uncertainty: differences reflect uncertainty about the real world
 - no true map
 - possible consensus map
 - combining maps can improve estimates

Models of uncertainty

- Determine effects of uncertainty/variation/error on results of analysis
 - if there is known variation, the results of a single analysis cannot be claimed to be correct
 - uncertainty analysis an essential part of GIS
 - error model the preferred term

Traditional error analysis

Measurements subject to distortion

 $-z' = z + \delta z$

Propagate through transformations

-r=f(z)

$$-r + \delta r = f(z + \delta z)$$

- But f is rarely known
 - complex compilation and interpretation
 - complex spatial dependencies between elements of resulting data set

Spatial dependence

In true values z

- In errors e
- cov(e_i, e_j) a decreasing positive function of distance
 - geostatistical framework

Scale effects, generalization as convolutions of z

Realization

A single instance from an error model an error model must be stochastic Monte Carlo simulation The Gaussian distribution metaphor scalar realizations a Gaussian distribution for maps an entire map as a realization

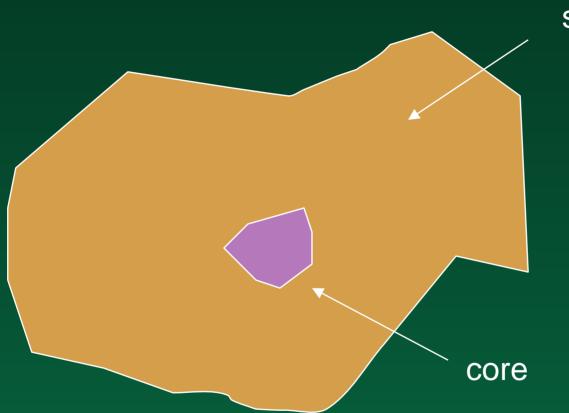
The area class map

Field of nominal values c(x), n>1

- spatially autocorrelated
- in raster, count of *i*,*i* joins greater than expected
- In vector, collection of discrete objects
 nodes, edges, areas in coverage model
 polygons in shapefile model

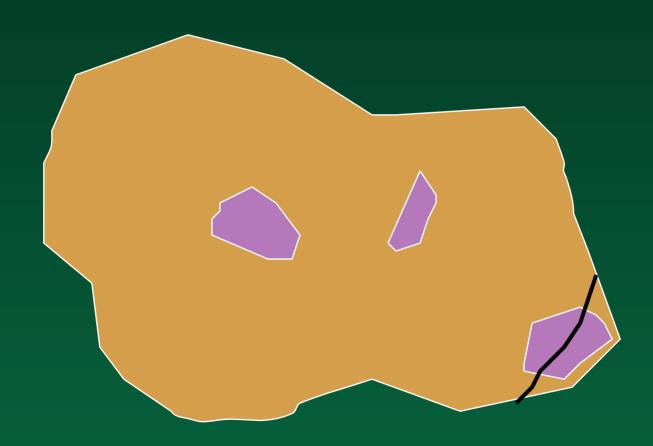
A collection of discrete objects

- Three conflicts with the observed nature of area-class maps
- In repeated mappings, positions, attributes, and numbers of objects will vary (topological variation)
- Positional uncertainties will vary widely depending on boundary clarity
- Confusion of attributes will vary within polygons
 - may be greatest in the center
 - contrary to the egg-yolk model



suburban

land use type urban



Effects of refining classification

Boundaries in coarsely classified maps preserved in finer classifications

Boundaries in coarsely classified maps become polygons at finer classifications

Six requirements of an error model for area-class maps

- 1. Address confusion *at every point* between observed class *c*' and consensus class *c*
- 2. Variation between realizations should emulate variation between repeated mappings
- 3. Autocorrelations in outcomes at nearby points
- 4. Emulate effects when maps are generalized, both thematically and cartographically

Continued requirements:

- Realizations should be invariant under changes in underlying representation, *e.g.*, raster cell size
- 6. Nominal case: results invariant under reordering of classes
- Review known models against these requirements

1. The confusion matrix

Useful descriptive device

- quality control
- Comparing classifiers, observers, scales, accuracies
- $\square p(c' \mid c)$
- Applied per-pixel or per-polygon
- Per-polygon case:
 - no within-polygon variation (violates 1)
 - no variation in topology (violates 2)
- Per-pixel case: no spatial dependence in outcomes (violates 3, 5)

2. The epsilon band

Addresses only positional accuracy in a fixed topology

- Assumes uniform degree of positional accuracy
- Violates 1, 2, 4

Models based on vectors of probabilities

At every location:

- $P(\mathbf{x}) = \{p_1, p_2, \dots, p_n\}$
- assume raster representation, P constant over cell
- Simple random assignment
 - no spatial dependence
 - violates 3
 - violates 5 since cell size would be evident in outcomes
- How to induce spatial dependence?

Spatial dependence in outcomes

Independent outcomes

- zero spatial dependence between pixels
- perfect positive spatial dependence within pixels
- implies pixel size is meaningful
- Induce spatial dependence
 - range >> pixel size
 - spatial dependence falls smoothly
 - independent of pixel size

3. Simple convolution

- Generate independent outcomes in each pixel
- Convolve using a modal filter
 - induces spatial dependence
 - size of filter determines range of dependence
 - satisfies 3, 5
- Posterior proportions not equal to prior probabilities
 - convolution favors more probable classes

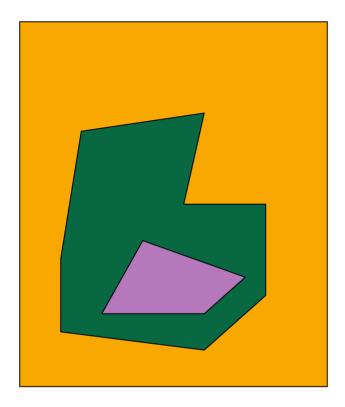
4. Sequential assignment

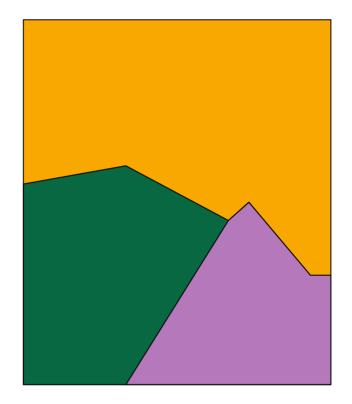
Goodchild, Sun, and Yang *IJGIS* (1992)
 Random field *z* with controlled spatial dependence

- U(0,1)
- assign class
- e.g. {0.2,0.3,0.5}
 - 1 (0.0,0.2); 2 (0.2,0.5); 3 (0.5,1.0)
 - z = 0.1, c = 1
 - z = 0.3, c = 2
 - z = 0.8, c = 3

Comparing to criteria

- 1. Within-polygon variation: yes
- 2. Topological variation: yes
- 3. Spatial dependence: yes
- 4. Generalization: increase cell size, smooth *z*, smooth *P*
- 5. Independent of cell size: yes
- 6. Invariant under reordering: no

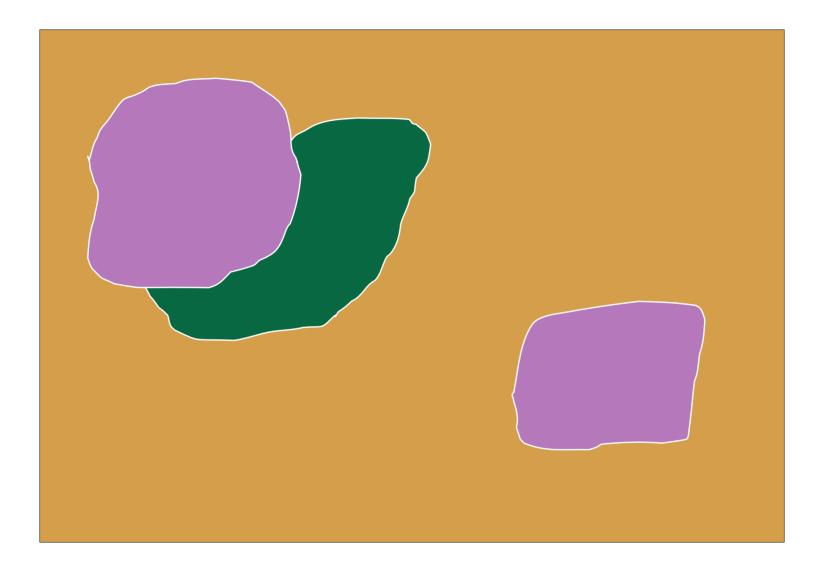




Indicator Kriging

Assign Class 1, notClass 1
Among notClass 1, assign Class 2, notClass 2
Continue to Class *n*-1

notClass *n*-1
Class *n*-1



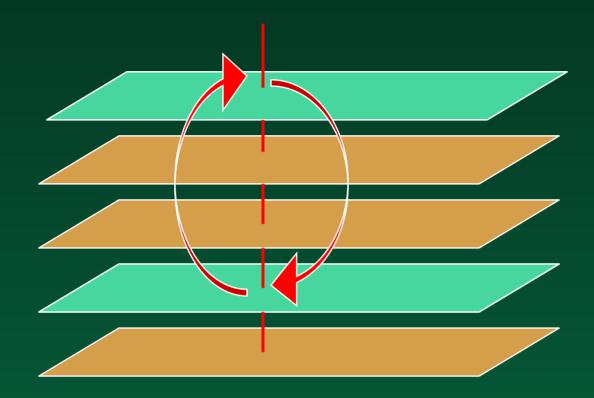
Process-based interpretation

Class i antecedent to class i-1

- -e.g. agriculture invaded by urban
- -e.g. grassland invaded by forest
- shape of boundary between class *i* and class *i*-1 determined by class *i*
- some applications have inherently ordered classes
 - but in this model all classes are ordered

5. Shuffling across realizations

- Shuffling within realizations unacceptable because of heterogeneity
- Generate N realizations with random assignment
- Establish target spatial dependencies
- Pick random pixel
 - pick random pair of realizations
 - swap if closer to target in both realizations



Properties

No justifying interpretation

 it works

 Spatial dependence characterized at pixel level

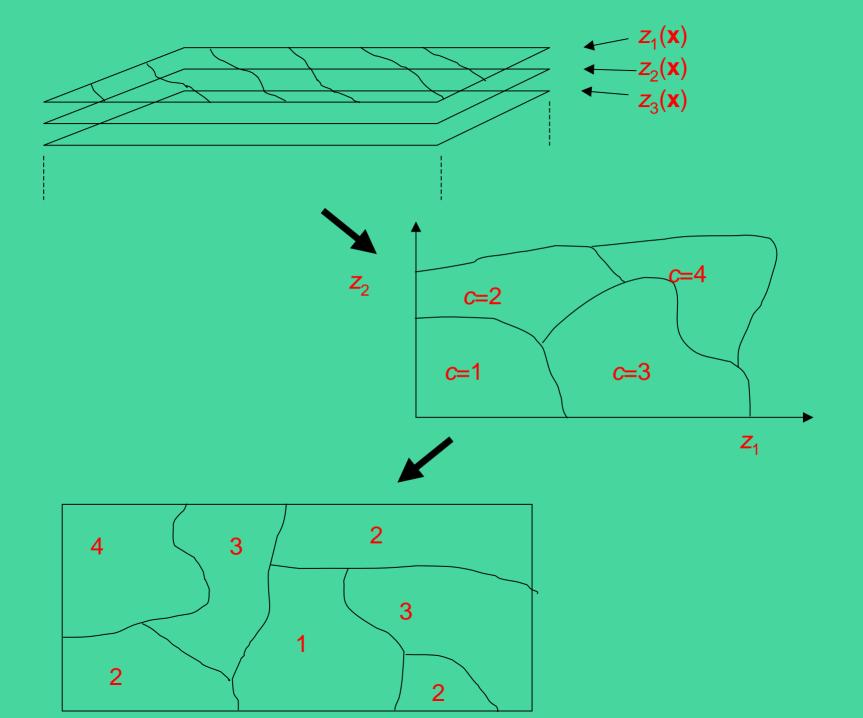
- no generalization possible, violating 4

It satisfies all other criteria

6. Phase-space model

m dimensional "phase" space defined by field variables

- partition into *n* regions
- Generate *m* random fields to locate x in phase space
- Assign x to one of n classes
 - compare classifiers
- Goodchild and Dubuc (1987)



Properties of the model

- No specification of *P*(**x**)
 - two versions of the model
- Independent generation of *z* in each realization
 - no memory between realizations
 - constant proportions
 - Fix *z* and generate distortions in each realization
 - memory determined by z not by P
 - varying proportions
 - size of distortion determines amount of variation between realizations

Properties of the model

- Only classes adjacent in phase space can be adjacent geographically
- Classifiers provide obvious basis
 - but how to calibrate variances, covariances of random fields?
 - how to calibrate in other cases?
 - model is over-specified
 - but strongly motivated by process
- All criteria satisfied
 - generalization by smoothing z, coarsening phasespace classification

Conclusions

Understanding of uncertainty should be process-based

- phase space
- ordinal field
- Spatial dependence and topological variation are critical
 - for applications
 - missing in the simpler models
- Some useful methods
 - shuffling most practical
 - phase space most satisfying