GIS and Spatial Statistics: One World View or Two?

Michael F. Goodchild University of California Santa Barbara

Location as attribute

The data table

Census summary table

What value is location as an explanatory variable?
Linking the table to a boundary file

enabling maps of summary data

Tract	Рор	Location	Shape
1	3786	х,у	\bigcirc
2	2966	х,у	
3	5001	x,y	
4	4983	x,y	\bigcirc
5	4130	x,y	\bigwedge
6	3229	x,y	\triangleleft
7	4086	х,у	\bigtriangledown
8	3979	х,у	\sim

Abstraction of geographic space

Cartograms

Invariance under rotation, displacement
 Reconstruction from a distance matrix
 Reconstruction from ranked distances

 ordered metric data (Coombs)

Space as a matrix

- W where w_{ij} is some measure of interaction
 - adjacency
 - decreasing function of distance
 - invariant under rotation, displacement
 - readily obtained from a GIS

Applications of the Wmatrix

Spatial regression

- add spatially lagged terms weighted by *W*Anselin's SPACESTAT
- Moran and Geary indices of spatial dependence

$$c = \frac{(n-1)\sum_{i} \sum_{j} w_{ij} (x_{i} - x_{j})^{2}}{2\sum_{i} \sum_{j} w_{ij} \sum_{i} (x_{i} - a)^{2}}$$

The location-as-attribute world view

 Objective: scientific explanation, understanding of social processes

- is location an explanatory factor?
- Relative location as expressed in the W matrix
 - a surrogate for spatial interaction
 - reflecting costs of transport, probability of interaction and acquaintance, probability of migration or travel, probability of seed dispersal

Geographic information systems

- Systems to acquire, store, transform, analyze, display, share, archive geographic information
- Geographic information
 - information about the specific characteristics of places on or near the Earth's surface
 - <x,z> where x is a location in space-time and z is some set of general properties

Origins of GIS

- The Canada Geographic Information System
 - circa 1965
 - support for the Canada Land Inventory
 - \$20 million investment by the Government of Canada
 - justified by accurate cost-benefit analysis

Environmental	Map Layer	Format	Attribute Tables
Geology		— Polygon-	- 8-5
Hazard Areas		— Polygon-	- 6-10
Existing Land Use		— Polygon-	- 2-4
Noise Contours	~ ((P) }	— Polygon-	- 2-4
Floodplain —		— Polygon -	- 3-5
Solls		— Polygon-	- 3-5
Vegetation		— IPolygon-	- 1-3
Serticial Hydrology -		Line/Polygo	n 12-15
EIR Study Arece		eint/Polyge	1-3
Flenning Steey Index. Reference —		- ⁽ Peint -	- 1-3

• • •

Objectives of GIS

Mapping and inventory

- representing the contents of the Earth's surface
- using space (and time) as the organizing dimensions
- Design
 - formulation, evaluation of future scenarios
- Support for science
 - search for pattern, anomalies, hypotheses, explanation
 - integrating layers of data
 - geographic context

The impact of the Internet

- Communication of geographic knowledge as the new purpose
 - sharing what we know
 - geographic information as a public good
 - spatial analysis as added value, manipulation of the message
 - spatial data archives and clearinghouses, the National Spatial Data Infrastructure

Fundamental parameters of the communication paradigm

Technical

- bandwidth, speed, access, reliability
- interoperability, semantics, understanding
- Media and formal structures
 - visual, auditory, tactile
 - speech, text, imagery, maps, tables...
 - facilitating or imposing

Interoperability

Common understanding of meaning
 semantics over syntax
 x is more commonly understood than *z*

🛱 MapFusion (tm) Workstation - By	Global Geomatics	_ 🗆 ×
<u>File Edit Tools ?</u>		
Personal Library Map Query/Legend	1	
Share Folder		
🖃 e: []	Choose the directory where your data files are located	
E:\ 176b_labs Acrobat3	Search Complete!	
Acrobat4	161 Files in your library!	
ADOBEAPP	Find	

Theme	Туре	Adapter	Path Name	File Name 🔺
DTED/Level 0/33d00 N/98d00 W	Image	dted	e:/GlobalGeo/Common/Geodata/demo/dted0/dt	DTED(DISK
DTED/Level 1/32d00 N/98d00 W	Image	dted	e:/GlobalGeo/Common/Geodata/demo/dted1/dt	DTED(DISK
DTED/Level 2/31d15 N/97d45 W	Image	dted	e:/GlobalGeo/Common/Geodata/demo/dted2/dt	DTED(DISK
225886	Matrix	geotiff	e:/176b_labs/225886.tif	225886
225886	Image	geotiff	e:/176b_labs/225886.tif	225886
CADRG/1:50K/zone1/32d00 N/98d	Image	rpf	e:/GlobalGeo/Common/Geodata/demo/cadrg/rpf	1:50K@1@
CADRG/1:50K/zone2/32d00 N/98d	Image	rpf	e:/GlobalGeo/Common/Geodata/demo/cadrg/rpf	1:50K@2@
CADRG/1:1M/zone1/33d06 N/99d1	Image	rpf	e:/GlobalGeo/Common/Geodata/demo/cadrg/rpf	1:1M@1@(
CADRG/1:1M/zone2/33d06 N/100d	Image	rpf	e:/GlobalGeo/Common/Geodata/demo/cadrg/rpf	1:1M@2@(
CADRG/1:250K/zone1/32d05 N/98	Image	rpf	e:/GlobalGeo/Common/Geodata/demo/cadrg/rpf	1:250K@1(
CADRG/1:250K/zone2/32d05 N/98	Image	rpf	e:/GlobalGeo/Common/Geodata/demo/cadrg/rpf	1:250K@2(
usenty	Area	shp	e:/176b_labs	uscnty 🔄 🗾
•				•
		Map Sele	cted Coverage(s)	
		S	hare Data	

If you want to know approximately how many people each census tract has, map total population.

Census tracts by total population.

If you want to know where most of the people are concentrated, map population density.

Census tracts by people per square mile.

The Modifiable Areal Unit Problem

Openshaw and Taylor

99 counties of Iowa
% Republican voters, % over 65

48 regions: -.548 to +.886
12 regions: -.936 to +.996
Solutions:

manipulate to determine range

strengthen theoretical framework

The GIS data types

Discrete geographic features

- points, lines, areas
- the contents of maps
- with associated attributes
- countable
- conceived as tables with associated feature geometry
- ESRI shapefiles

Scottish Munros

1... Ben Hope 2., Ben Klibreck 3...Ben More Assynt 4...An Teallach 5. Seana Bhraigh 6...Ben Wyvis 7...Slioch 8...Sgorr Ruadh 9..Moruisq 10.. Sgurr na Ruaidhe **11..Bia Bheinn** 12...Squrr na Lapalch 13...Ben Attow 14. The Saddle 15..Creag a' Mhaim **16..Ladhar Bheinn**

17..Coireachan 18...Ben Nevis 19..Ben More 20...Ben Starav 21. Braeriach 22...Ben Avon 23. Meall Chualch 24. Mt Keen 25...Deinn Dearg 26...Glas Maol 27..Driesh 28. Schlehallinn 29...Ben Chonzie 30...Ben Lawers 30..Ben Challum 32...Ben Lomond

Fields

- Geography as a collection of continuous variables
 - measured on nominal, ordinal, interval, ratio scales
 - vector fields of direction and magnitude
 - exactly one value per point
 - $-z=f(\mathbf{x})$
 - population density, land ownership, zoning

The location-as-continuum world view

- Discrete objects result from human interpretation
- Social processes respond to both fields and discrete objects
- Reporting zones lump the continuum in arbitrary ways

Spatial heterogeneity

- Uncontrolled variance over the Earth's surface
- There is no average place
- Results depend explicitly on bounds
- Places as samples
- Consider the model:

y = a + bx

Spatial dependence

The First Law of Geography (Tobler)

- all things are related but nearby things are more related than distant things
- Acceptance of the null hypothesis of no spatial dependence is always a Type II error
- Hell is a place with no spatial dependence

Integrating GIS and spatial statistics

Role of space

- an organizing dimension for information
- a source of context and linkage
- an explanatory variable
- a problem
- Terminology
 - lattice, support, drift, topology, layer, coverage, region
- Software as glue
 - within what conceptual framework?