# Beyond GPS and traditional time-geography issues Kostas Goulias



## Problem 1

- Data intensive approaches over VERY long periods → HUGE Respondent Burden
- Try to eliminate obvious, trivial, and easily derived information
- Develop devices that provide supplementary data

#### The HATO Device



FIGURE 2 Exterior view of BCALS

#### TABLE 1 Data to be acquired

| Data (Numerals indicate geographic points of observation.)              | Bytes |  |
|-------------------------------------------------------------------------|-------|--|
| X-axis acceleration (32 Hz)                                             | 2     |  |
| Y-axis acceleration (32 Hz)                                             | 2     |  |
| Z-axis acceleration (32 Hz)                                             | 2     |  |
| Atmospheric pressure sensor (32 Hz)                                     | 2     |  |
| Angular velocity (32 Hz)                                                | 2     |  |
| Ultraviolet ray (32 Hz)                                                 | 2     |  |
| Direction (32 Hz)                                                       | 2     |  |
| Sound (10 Hz)                                                           | 2     |  |
| PS location (latitude, longitude, altitude, velocity, direction) (1 Hz) | 23    |  |
| Elliptical error of GPS location measurement                            | 15    |  |
| 88-day continuous recording (battery duration: about 3 days)            |       |  |
|                                                                         |       |  |

OS is TRON (activity identification programs can be embedded/rewritten in C)

#### Signatures (locations)



#### Signatures (modes)

- X acceleration - Y acceleration - Z acceleration



FIGURE 11 Acceleration data of motorbike travel

FIGURE 13 Acceleration data of bus travel

FIGURE 12 Acceleration data of automobile travel



FIGURE 14 Acceleration data of train travel

# Signatures (non-motor modes)



# Problem 2

- We participate in activities for others
- We participate in activities with others
- We allocate tasks and receive assignments of tasks
- Three aspects critical for policy analysis models

 We develop models to reflect these aspects (among many others) and have very limited data to estimate-verify-validate our models

# Family Example (time trace from South Perth)



#### **Altruistic vs Self-Serving**

# Different "styles" at different places

#### The different altruistic styles



# Their heterogeneous presence at places



# Distributed household members



I call Jack and ask him to buy me some wine = extended my prism in an unexpected way for physics! My PRISMS projection on XY

Jack's PRISM projection on XY (jack is a friend)

# Problem 3

- One key objective is better operations
- We are not working actively to provide interface between "planning models and operations
- Opportunity?

### Eye in the Sky – Athens Olympics



# **Summary Potential Solutions**

- Combine GPS with other wireless communications – eliminate useless burden collect more and better detail
- Develop techniques that capture human interactions – personal dataloggers to all persons in a household (major IRB headache!)
- Create data+models interfaces with traffic operations – spatial and temporal resolution and optimal number of probes